Homework 4
MA 123, Ivan Zaigralin

Be first to report a math error for extra credit.

Read Stewart sections 2.6, 2.7. Alternatively, read
http://en.wikibooks.org/wiki/Calculus/Differentiation/Differentiation_Defined.
Both sources contain ample selections of practice exercises.
Exercise 1. Define what it means for a function $f(x)$ to be differentiable at a point a.

Exercise 2. Find the equation of the tangent line to the curve $y(x)=$ $4 x-3 x^{2}$ at the point $(2,-4)$.
$[y=-8 x+12]$
Exercise 3. Find the equation of the tangent line to the curve $y(x)=\sqrt{x}$ at the point $(1,1)$.
$\left[y=\frac{1}{2} x+\frac{1}{2}\right]$
Exercise 4. The ball is thrown into the air with a velocity of $40 \mathrm{~m} / \mathrm{s}$. Its height in meters after t seconds is given by $h(t)=40 t-16 t^{2}$. Find the velocity of the ball when $t=2$.
[$-24 \mathrm{~m} / \mathrm{s}$]
Exercise 5. The displacement in meters of a particle moving in a straight line is given by the equation $s=1 / t^{2}$, where t is measured in seconds. Find the velocity of the particle at times $t=a, t=1, t=2, t=3$.
$\left[-2 / a^{3} \mathrm{~m} / \mathrm{s},-2 \mathrm{~m} / \mathrm{s},-\frac{1}{4} \mathrm{~m} / \mathrm{s},-\frac{2}{27} \mathrm{~m} / \mathrm{s}\right]$
Exercise 6. Find an equation of the tangent line to the graph of the function $g(x)$ at $x=5$ if $g(5)=-3$ and $g^{\prime}(5)=4$.
$[y=4 x-23]$
Use the definition of the derivative to find $f^{\prime}(a)$.
Exercise 7. $f(x)=3 x^{2}-4 x+1$.
$\left[f^{\prime}(a)=6 a-4\right]$

Exercise 8. $f(t)=\frac{2 t+1}{t+3}$.
$\left[f^{\prime}(a)=\frac{5}{(a+3)^{2}}\right]$
Exercise 9. $f(x)=\sqrt{1-2 x}$.
$\left[f^{\prime}(a)=\frac{-1}{\sqrt{1-2 a}}\right]$

Exercise 10. Sketch the graph of a function for which all of the following conditions hold:

- $f(0)=0$,
- $f^{\prime}(0)=3$,
- $f^{\prime}(1)=0$,
- $f^{\prime}(2)=-1$.

Find the derivative of the given function by using the definition of the derivative. Find the respective domains of the function and of its derivative.
Exercise 11. $f(x)=\frac{1}{2} x-\frac{1}{3}$.
$\left[f^{\prime}(x)=\frac{1}{2}, \mathbb{R}, \mathbb{R}\right]$
Exercise 12. $f(x)=\sqrt{1+2 x}$.
$\left[f^{\prime}(x)=\frac{1}{\sqrt{1+2 x}}, x \geqslant-\frac{1}{2}, x>-\frac{1}{2}\right]$
Exercise 13. $g(t)=\frac{4 t}{t+1}$.
$\left[g^{\prime}(t)=\frac{4}{(t+1)^{2}}, t \neq-1, t \neq-1\right]$

